FACTORS AFFECTING PRECISION AGRICULTURE ADOPTION: A SYSTEMATIC LITTERATURE REVIEW

Main Article Content

Taoufik Yatribi

Abstract

The aim of this paper is to present the main advances in the adoption of precision agriculture technologies. While we are witnessing the emergence of a literature dedicated to the adoption of new technologies, this theme still su?ers from a lack of consensus on its conceptualization. Based on the prisma statement method (Preferred Reporting Items for Systematic Reviews and Meta-Analyzes), the objective is to carry out a review of the systemic literature in order to identify the main factors of adoption of the technologies of precision agriculture over the past ten years. The results show that individual factors are the most empirically identified as determining factors in the adoption of precision agriculture technologies. That said, the farmer is at the center of the adoption decision. Perceived utility is the factor most identified in the literature as the determinant of adoption.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yatribi, T. (2020). FACTORS AFFECTING PRECISION AGRICULTURE ADOPTION: A SYSTEMATIC LITTERATURE REVIEW . Economics, 8(2), 103-121. https://doi.org/10.2478/eoik-2020-0013
Section
Review article

References

Adnan, N., Nordin, S.M., bin Abu Bakar, Z., 2017. Understanding and facilitating sustainable agricultural practice: A comprehensive analysis of adoption behaviour among Malaysian paddy farmers. Land Use Policy 68, 372–382. https://doi.org/10.1016/j.landusepol.2017.07.046

Asare, E., Segarra, E., 2018. Adoption and extent of adoption of georeferenced grid soil sampling technology by cotton producers in the southern US. Precis. Agric. 19, 992–1010. https://doi.org/10.1007/s11119-018-9568-3

Aubert, B.A., Schroeder, A., Grimaudo, J., 2012. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 54, 510–520. https://doi.org/10.1016/j.dss.2012.07.002

Bagheri, N., Bordbar, M., 2014. Solutions for fast development of precision agriculture in Iran. Agric. Eng. Int. CIGR J. 16, 119–123.

Barnes, A.P., Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., Fountas, S., van der Wal, T., Gómez-Barbero, M., 2019. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 80, 163–174. https://doi.org/10.1016/j.landusepol.2018.10.004

Bora, G.C., Nowatzki, J.F., Roberts, D.C., 2012. Energy savings by adopting precision agriculture in rural USA. Energy Sustain. Soc. 2, 1–5. https://doi.org/10.1186/2192-0567-2-22

Bramley, R.G.V., Ouzman, J., 2019. Farmer attitudes to the use of sensors and automation in fertilizer decision-making: nitrogen fertilization in the Australian grains sector. Precis. Agric. 20, 157– 175. https://doi.org/10.1007/s11119-018-9589-y

Brown, P., Daigneault, A., Dawson, J., 2019. Age, values, farming objectives, past management decisions, and future intentions in New Zealand agriculture. J. Environ. Manage. 231, 110– 120. https://doi.org/10.1016/j.jenvman.2018.10.018

Brown, P., Hart, G., Small, B., de Oca Munguia, O.M., 2016. Agents for di?usion of agricultural innovations for environmental outcomes. Land Use Policy 55, 318–326. https://doi.org/10.1016/j.landusepol.2016.04.017

Brown, P., Roper, S., 2017. Innovation and networks in New Zealand farming. Aust. J. Agric. Resour. Econ. 61, 422–442. https://doi.org/10.1111/1467-8489.12211

Bucci, G., Bentivoglio, D., Finco, A., 2019. Factors a?ecting ict adoption in agriculture: A case study in italy. Qual. - Access Success 20, 122–129.

Carrer, M.J., de Souza Filho, H.M., Batalha, M.O., 2017. Factors in?uencing the adoption of Farm Management Information Systems (FMIS) by Brazilian citrus farmers. Comput. Electron. Agric. 138, 11–19. https://doi.org/10.1016/j.compag.2017.04.004

Chang, S.C., Tsai, C.-H., 2015. The adoption of new technology by the farmers in Taiwan. Appl. Econ. 47, 3817–3824. https://doi.org/10.1080/00036846.2015.1019035

Danso-Abbeam, G., Dagunga, G., Ehiakpor, D.S., 2019. Adoption of Zai technology for soil fertility management: evidence from Upper East region, Ghana. J. Econ. Struct. 8. https://doi.org/10.1186/s40008-019-0163-1

D’Antoni, J.M., Mishra, A.K., Joo, H., 2012. Farmers’ perception of precision technology: The case of autosteer adoption by cotton farmers. Comput. Electron. Agric. 87, 121–128. https://doi.org/10.1016/j.compag.2012.05.017

D’Antoni, Jeremy M., Mishra, A.K., Joo, H., 2012. Farmers’ perception of precision technology: The case of autosteer adoption by cotton farmers. Comput. Electron. Agric. 87, 121–128. https://doi.org/10.1016/j.compag.2012.05.017

Dela Rue, B.T., Eastwood, C.R., 2017. Individualised feeding of concentrate supplement in pasturebased dairy systems: Practices and perceptions of New Zealand dairy farmers and their advisors. Anim. Prod. Sci. 57, 1543–1549. https://doi.org/10.1071/AN16471

Ferrari, E., Cavallo, E., 2011. Issues in new technology adoption in agriculture: A survey among Italian tractor’s users. Presented at the CEUR Workshop Proceedings, pp. 121–128.

Frankelius, P., Norrman, C., Johansen, K., 2019. Agricultural Innovation and the Role of Institutions: Lessons from the Game of Drones. J. Agric. Environ. Ethics 32, 681–707. https://doi.org/10.1007/s10806-017-9703-6

Grifn, T.W., Miller, N.J., Bergtold, J., Shanoyan, A., Sharda, A., Ciampitti, I.A., 2017. Farm’s sequence of adoption of information-intensive precision agricultural technology. Appl. Eng. Agric. 33, 521–527. https://doi.org/10.13031/aea.12228

Gyata, B.A., 2019. Comparative assessment of adoption determinants of electronic wallet system by rice farmers in Benue and Taraba states, Nigeria. Food Res. 3, 117–122. https://doi.org/10.26656/fr.2017.3(2).132

Hay, R., Pearce, P., 2014. Technology adoption by rural women in Queensland, Australia: Women driving technology from the homestead for the paddock. J. Rural Stud. 36, 318–327. https://doi.org/10.1016/j.jrurstud.2014.10.002

Higgins, V., Bryant, M., Howell, A., Battersby, J., 2017. Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. J. Rural Stud. 55, 193–202. https://doi.org/10.1016/j.jrurstud.2017.08.011

Jensen, H.G., Jacobsen, L.-B., Pedersen, S.M., Tavella, E., 2012. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precis. Agric. 13, 661–677. https://doi.org/10.1007/s11119-012-9276-3

Kaarthikeyan, G.M., Suresh, A., 2019. A study on understanding the adoption of water saving technology: A case study of drip irrigation. Int. J. Recent Technol. Eng. 7, 1123–1130.

Kaler, J., Ruston, A., 2019. Technology adoption on farms: Using Normalisation Process Theory to understand sheep farmers’ attitudes and behaviours in relation to using precision technology in ?ock management. Prev. Vet. Med. 170. https://doi.org/10.1016/j.prevetmed.2019.104715

Kaliba, A.R., Mushi, R.J., Gongwe, A.G., Mazvimavi, K., 2020. A typology of adopters and nonadopters of improved sorghum seeds in Tanzania: A deep learning neural network approach. World Dev. 127. https://doi.org/10.1016/j.worlddev.2019.104839

Kawarazuka, N., Prain, G., 2019. Gendered processes of agricultural innovation in the Northern uplands of Vietnam. Int. J. Gend. Entrep. 11, 210–226. https://doi.org/10.1108/IJGE-04-2019-0087

Keskin, M., Sekerli, Y.E., 2016. Awareness and adoption of precision agriculture in the Cukurova region of Turkey. Agron. Res. 14, 1307–1320.

Khanal, A.R., Mishra, A.K., Lambert, D.M., Paudel, K.K., 2019. Modeling post adoption decision in precision agriculture: A Bayesian approach. Comput. Electron. Agric. 162, 466–474. https://doi.org/10.1016/j.compag.2019.04.025

Knierim, A., Kernecker, M., Erdle, K., Kraus, T., Borges, F., Wurbs, A., 2019. Smart farming technology innovations – Insights and re?ections from the German Smart-AKIS hub. NJAS - Wagening. J. Life Sci. 90–91. https://doi.org/10.1016/j.njas.2019.100314

Koutsos, T., Menexes, G., 2019. Economic, agronomic, and environmental benefits from the adoption of precision agriculture technologies: A systematic review. Int. J. Agric. Environ. Inf. Syst. 10, 40–56. https://doi.org/10.4018/IJAEIS.2019010103

Lambert, D.M., Paudel, K.P., Larson, J.A., 2015. Bundled adoption of precision agriculture technologies by cotton producers. J. Agric. Resour. Econ. 40, 325–345.

McCarthy, B., Liu, H.-B., Chen, T., 2016. Innovations in the agro-food system: Adoption of certified organic food and green food by Chinese consumers. Br. Food J. 118, 1334–1349. https://doi.org/10.1108/BFJ-10-2015-0375

Mengistu, F., Assefa, E., 2019. Farmers’ decision to adopt watershed management practices in Gibe basin, southwest Ethiopia. Int. Soil Water Conserv. Res. 7, 376–387. https://doi.org/10.1016/j.iswcr.2019.08.006

Miller, N.J., Grifn, T.W., Ciampitti, I.A., Sharda, A., 2019. Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precis. Agric. 20, 348– 361.

Ng’ang’a, S.K., Jalang’o, D.A., Girvetz, E.H., 2019. Adoption of technologies that enhance soil carbon sequestration in East Africa. What in?uence farmers’ decision? Int. Soil Water Conserv. Res. https://doi.org/10.1016/j.iswcr.2019.11.001

Nordin, S.M., Noor, S.M., Saad, M.S. bin M., 2014. Innovation Di?usion of New Technologies in the Malaysian Paddy Fertilizer Industry. 2nd World Conf. Bus. Econ. Manag. 109, 768–778.

Paustian, M., Teuvsen, L., 2017. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 18, 701–716. https://doi.org/10.1007/s11119-016-9482-5

Pierpaoli, E., Carli, G., Pignatti, E., Canavari, M., 2013. Drivers of Precision Agriculture Technologies Adoption: A Literature Review. 6th Int. Conf. Inf. Commun. Technol. Agric. Food Environ. HAICTA 2013 8, 61–69. https://doi.org/10.1016/j.protcy.2013.11.010

Reichardt, M., Jürgens, C., 2009. Adoption and future perspective of precision farming in Germany: Results of several surveys among di?erent agricultural target groups. Precis. Agric. 10, 73–94. https://doi.org/10.1007/s11119-008-9101-1

Robertson, M.J., Llewellyn, R.S., Mandel, R., Lawes, R., Bramley, R.G.V., Swif, L., Metz, N., O’Callaghan, C., 2012. Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precis. Agric. 13, 181–199. https://doi.org/10.1007/s11119-011-9236-3

Séogo, W., Zahonogo, P., 2019. Land tenure system innovation and agricultural technology adoption in Burkina Faso: Comparing empirical evidence to the worsening situation of both rural people vulnerability and vulnerable groups’ access to land. Afr. J. Sci. Technol. Innov. Dev. 11, 833–842. https://doi.org/10.1080/20421338.2019.1587257

Walton, J.C., Roberts, R.K., Lambert, D.M., Larson, J.A., English, B.C., Larkin, S.L., Martin, S.W., Marra, M.C., Paxton, K.W., Reeves, J.M., 2010. Grid soil sampling adoption and abandonment in cotton production. Precis. Agric. 11, 135–147. https://doi.org/10.1007/s11119-009-9144-y

Watcharaanantapong, P., Roberts, R.K., Lambert, D.M., Larson, J.A., Velandia, M., English, B.C., Rejesus, R.M., Wang, C., 2014. Timing of precision agriculture technology adoption in US cotton production. Precis. Agric. 15, 427–446. https://doi.org/10.1007/s11119-013-9338-1

Welsh, R., Grimberg, S., Gillespie, G.W., Swindal, M., 2010. Technoscience, anaerobic digester technology and the dairy industry: Factors in?uencing north country new york dairy farmer views on alternative energy technology. Renew. Agric. Food Syst. 25, 170–180. https://doi.org/10.1017/S174217051000013X

Zhang, T., Yang, Y., Ni, J., Xie, D., 2019. Adoption behavior of cleaner production techniques to control agricultural non-point source pollution: A case study in the Tree Gorges Reservoir Area. J. Clean. Prod. 223, 897–906. https://doi.org/10.1016/j.jclepro.2019.03.194 INTRODUCTION